合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 連鑄結(jié)晶器內(nèi)渣鋼兩相表面張力和界面張力的演變行為與機(jī)制
> 不同濃度下白糖、紅糖溶液的表面張力系數(shù)變化
> 表面張力儀在表面活性劑中的應(yīng)用
> 往復(fù)振動(dòng)篩板塔強(qiáng)化低界面張力萃取體系傳質(zhì)效率(一)
> 如何理解“表面張力”這一概念?
> 鍍錫板與涂料的表面張力不匹配導(dǎo)致印鐵縮孔,怎么解決?
> 可視化實(shí)驗(yàn)方法研究電場作用下液滴撞擊表面的動(dòng)態(tài)行為(三)
> 數(shù)碼噴印墨水行業(yè)競爭格局、市場規(guī)模及發(fā)展前景
> 油乳劑疫苗黏度與穩(wěn)定性影響因素
> 無機(jī)粒子對(duì)TPAE界面張力、發(fā)泡、抗收縮行為的影響(二)
推薦新聞Info
-
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(三)
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(二)
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(一)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動(dòng)力學(xué)曲線、界面張力變化(四)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動(dòng)力學(xué)曲線、界面張力變化(三)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動(dòng)力學(xué)曲線、界面張力變化(二)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動(dòng)力學(xué)曲線、界面張力變化(一)
> 表面張力實(shí)驗(yàn)、接觸角實(shí)驗(yàn)分析抑塵試劑對(duì)煤的潤濕結(jié)果
> Kibron表面張力儀研究燒結(jié)礦聚結(jié)行為
> 基于界面張力和表面張力測試評(píng)估商用UV油墨對(duì)不同承印紙張的表面浸潤性差異(三)
拉筒法和靜滴法測定連鑄結(jié)晶器保護(hù)渣表面張力(一)
來源:當(dāng)代化工研究 瀏覽 895 次 發(fā)布時(shí)間:2024-09-25
1.前言
表面張力是冶金熔渣重要的物理化學(xué)性質(zhì)之一。煉鋼過程中的爐渣泡沫化現(xiàn)象、連鑄過程中保護(hù)渣卷渣、鋼渣在結(jié)晶器彎月面處發(fā)生界面化學(xué)反應(yīng)、保護(hù)渣吸收鋼中上浮的非金屬夾雜物等冶金現(xiàn)象與熔渣的表面張力性能密切相關(guān)。因此,熔渣表面張力的測量和預(yù)測對(duì)于考察熔渣表面張力的演變行為、改善熔渣冶金性能具有重要意義。目前,關(guān)于高溫冶金熔渣表面張力的預(yù)測主要是依據(jù)Butler方程建立熔渣表面張力計(jì)算模型。Arutyunyan等和Nakamoto等依據(jù)Butler方程建立了熔渣表面張力熱力學(xué)計(jì)算模型,通過此模型估算了CaO-Al2O3、CaO-SiO2-Na2O、CaO-SiO2-Al2O3和CaO-SiO2-B2O3等簡單的二元和三元熔渣表面張力,但是對(duì)于多元熔渣體系,由于多元熔渣結(jié)構(gòu)復(fù)雜,熔體中各種離子的存在形式以及分布函數(shù)尚不清晰,造成在模型計(jì)算的過程中缺乏一些重要的參數(shù)。因此,表面張力計(jì)算模型在實(shí)際冶金熔渣體系中受到一定限制,而對(duì)于多元熔渣表面張力的數(shù)據(jù)獲取往往采用實(shí)驗(yàn)測定的方法。
實(shí)驗(yàn)測定液體表面張力的方法主要有毛細(xì)管上升法、差分最大氣泡壓力法、Wilhelmy盤法、懸滴法、滴體積法、拉筒法和靜滴法等。其中,毛細(xì)管上升法、懸滴法和Wilhelmy盤法適用于中低溫液體表面張力的測定;差分最大氣泡壓力法和滴體積法操作過程中對(duì)實(shí)驗(yàn)設(shè)備要求苛刻,在高溫下不易對(duì)熔渣表面張力進(jìn)行測定;拉筒法和靜滴法均是測定高溫熔體表面張力較為適用的方法,但由于高溫下冶金熔渣的組成以及成分性質(zhì)不同,使得高溫熔渣表面張力的測定變得復(fù)雜,因此需根據(jù)高溫熔渣的組成情況而定。
連鑄結(jié)晶器保護(hù)渣主要以CaO和SiO2為基料,包含堿金屬氧化物(Na2O/K2O)和氟化物(CaF2)等氧化物的混合物。保護(hù)渣是提高連鑄坯質(zhì)量的重要材料,這主要取決于保護(hù)渣的物理化學(xué)性能,其中表面張力會(huì)影響彎月面的形狀以及液態(tài)保護(hù)渣與凝固坯殼之間的附著力,并進(jìn)一步影響保護(hù)渣的流動(dòng)速率和渣膜厚度。因此,本文以連鑄結(jié)晶器保護(hù)渣為考察對(duì)象,分別運(yùn)用拉筒法和靜滴法測定保護(hù)渣表面張力,在測定過程中分析這兩種實(shí)驗(yàn)方法的應(yīng)用特點(diǎn),并考察保護(hù)渣表面張力隨溫度變化的演變行為,從而為提高熔渣表面張力數(shù)值精確度、控制熔渣冶金性能、解析復(fù)雜的冶金現(xiàn)象提供一些數(shù)據(jù)和測定技術(shù)支撐。
2.拉筒法表面張力測定
參照工業(yè)生產(chǎn)用結(jié)晶器保護(hù)渣的組成和成分,選擇CaOSiO2-Na2O-CaF2渣為實(shí)驗(yàn)渣,CaO/SiO2質(zhì)量分?jǐn)?shù)比為1.0,Na2O和CaF2的質(zhì)量分?jǐn)?shù)分別為15%和20%,如表1所示。采用分析純?cè)噭〤aO、SiO2、Na2CO3和CaF2配制實(shí)驗(yàn)樣品,其中Na2O的用量由Na2CO3折算而成。實(shí)驗(yàn)前,將CaO、SiO2、Na2CO3和CaF2試劑在800℃下焙燒2h,以除去水分及其他雜質(zhì)。
表1 CaO-SiO2-Na2O-CaF2熔渣組成(質(zhì)量分?jǐn)?shù)/%)
拉筒法是利用一個(gè)垂直中空的圓筒帶起液體所產(chǎn)生的拉力與液體表面張力的平衡關(guān)系來計(jì)算表面張力,如式(1)所示:
式中,σ—熔渣表面張力;mmax—拉起液體的最大質(zhì)量,在液體即將脫離圓筒的瞬間,即液體對(duì)拉筒的拉力與表面張力平衡時(shí),拉力達(dá)到最大;g—重力加速度;R—圓筒的半徑;C—校正參數(shù),在測量熔體表面張力之前,在室溫中需通過測量已知表面張力數(shù)值的純物質(zhì)(如純凈水)來獲取校正參數(shù)值,且要多次測量直到參數(shù)值達(dá)到穩(wěn)定。在高溫下測定熔體表面張力,需選擇材質(zhì)合適的圓筒。圓筒所采用的材質(zhì)熔點(diǎn)必須高于熔體;為了提高實(shí)驗(yàn)測量的精確度,需選擇低熱膨脹性的圓筒,保證在高溫下圓筒不發(fā)生變形;圓筒與熔體之間要有一定的潤濕性,保證在拉筒的過程中能夠帶起熔體,同時(shí)還要避免熔體與圓筒之間發(fā)生化學(xué)反應(yīng)。在本實(shí)驗(yàn)中,圓筒的材質(zhì)為金屬鉬,為了降低鉬的熱膨脹性,采用質(zhì)量分?jǐn)?shù)為99.999%的高純鉬。另外,圓筒的尺寸也是影響熔體表面張力數(shù)值精確度的重要因素之一。采用尺寸過大的圓筒,會(huì)延長達(dá)到圓筒與熔體熱平衡的時(shí)間;采用尺寸過小的圓筒,在高溫和通氣的條件下易受到熱氣流的影響。在本實(shí)驗(yàn)中,圓筒的半徑為6.5mm。
采用拉筒法測定熔渣表面張力需借助高溫熔體物性綜合測定儀。該設(shè)備主要包括高溫爐、電子天平(精度為0.001g)和溫度控制及數(shù)據(jù)采集系統(tǒng)。熔渣表面張力測定過程如下:將分析純?cè)噭〤aO、SiO2、Na2CO3和CaF2按照成分配比分別進(jìn)行稱重并充分混合均勻;將混合試劑放入高純石墨坩堝(質(zhì)量分?jǐn)?shù)為99.99%);將高純石墨坩堝放入到高溫爐的恒溫區(qū)內(nèi);常溫下多次測量純凈水的表面張力值,數(shù)值達(dá)到穩(wěn)定后,將數(shù)值代入到式(1)中獲取校正參數(shù)值C;通入保護(hù)性氣體高純氬氣(防止石墨坩堝和石墨套筒被氧化);以5℃·min-1的升溫速率進(jìn)行升溫,升至設(shè)定溫度后保溫1h;待渣樣充分熔化后,放入一個(gè)垂直中空的鉬圓筒,將鉬圓筒與熔渣液面水平接觸,60s后將拉筒平穩(wěn)且緩慢地拉離熔渣表面;讀取帶起液體的重量最大值,并根據(jù)式(1)計(jì)算熔渣的表面張力。熔渣實(shí)驗(yàn)結(jié)果如圖1所示。