合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 如何提高釹鐵硼磁體表面硅鈦系納米涂層表面張力
> 高性能氟碳防水鎖劑(FS-1)對(duì)鹽水溶液表面張力的影響
> 農(nóng)藥霧滴霧化與在玉米植株上的沉積特性研究
> 原油中活性物質(zhì)與堿作用下對(duì)界面張力的影響
> 氣溶膠固定劑PAM-b-PVTES合成路線及GPC、DSC、表面張力等性能測(cè)試(三)
> 基于藥液表面張力測(cè)定估算蘋果樹最大施藥液量的方法(四)
> 表面活性劑的應(yīng)用
> 基于表面張力方法判斷物質(zhì)(或材料)的親水性(二)
> 不同溫度下氟碳鏈長度對(duì)表面活性劑理化性能的影響
> Kibron表面張力儀研究燒結(jié)礦聚結(jié)行為
推薦新聞Info
-
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(三)
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(二)
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(一)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動(dòng)力學(xué)曲線、界面張力變化(四)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動(dòng)力學(xué)曲線、界面張力變化(三)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動(dòng)力學(xué)曲線、界面張力變化(二)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動(dòng)力學(xué)曲線、界面張力變化(一)
> 表面張力實(shí)驗(yàn)、接觸角實(shí)驗(yàn)分析抑塵試劑對(duì)煤的潤濕結(jié)果
> Kibron表面張力儀研究燒結(jié)礦聚結(jié)行為
> 基于界面張力和表面張力測(cè)試評(píng)估商用UV油墨對(duì)不同承印紙張的表面浸潤性差異(三)
表面張力和接觸角對(duì)塑料熔體在微型通道內(nèi)的流變行為的影響(一)
來源:中國塑料 瀏覽 1071 次 發(fā)布時(shí)間:2024-10-16
擠出成型因?yàn)榫哂袑?shí)用范圍廣、生產(chǎn)效率高、投資少、見效快等一系列優(yōu)點(diǎn)而成為高聚物成型的最重要的方法之一。近年來,產(chǎn)品微型化呈現(xiàn)出蓬勃發(fā)展的趨勢(shì)。擠出產(chǎn)品也朝著微型化的方向發(fā)展。由于微尺度效應(yīng)的影響,宏觀的工藝參數(shù)、結(jié)構(gòu)參數(shù)、物理參數(shù)不能簡單的按幾何比例縮小應(yīng)用到微擠出成型過程中。一些在宏觀擠出中可以忽略的影響因素包括壁面滑移、表面張力、對(duì)流換熱、黏性耗散等在微尺度效應(yīng)下變得不可忽略,甚至成為影響微擠出成型的主要因素。對(duì)塑料熔體在微型通道內(nèi)的流變行為的研究是對(duì)流變理論的一種完善和補(bǔ)充,有助于推動(dòng)微擠出的不斷完善,并且有利于擴(kuò)大塑料微擠出技術(shù)的應(yīng)用領(lǐng)域。
本文采用Polyflow軟件對(duì)聚合物在微通道中的流變行為進(jìn)行數(shù)值模擬,研究了表面張力對(duì)微擠出流場(chǎng)的影響。
1表面張力
1.1定義或解釋
促使液體表面收縮的力叫做表面張力,其本質(zhì)是分子力,是液體表面層由于分子引力不均衡而產(chǎn)生的沿表面作用于任一界線上的張力。表面張力的方向和液面相切,其合力沿著曲面法向方向。接觸角用來表示表面張力的方向。表面張力及接觸角如圖1所示。
單位面積上的表面張力的合力fn使表面曲率減少,σ為表面張力系數(shù),滿足式(1):
圖1表面張力及接觸角
式中fn——單位面積上的法向力,N/m2
σ——表面張力系數(shù),N/m
R——材料接觸界面的高斯曲率,m
n——液體自由表面法向方向的單位矢量
R滿足式(2):
式中R1、R2——接觸界面的2種材料的曲率半徑
表面張力的方向和液面相切,液體表面由于表面張力作用所引起的切向力為:
式中fτ——液體表面上受到的切向力
l——自由表面的長度
τ——液體自由表面切向方向的單位矢量
通常用接觸角(θ)來描述切向力的方向。以水平線為參考線,逆時(shí)針為正,順時(shí)針為負(fù):
在計(jì)算流體力學(xué)中,常采用Brackbill的連續(xù)表面力模型CSF 將界面的表面張力項(xiàng)離散為等效的體積力,以附加體積力的方式加到流體的動(dòng)量方程中。它分布在交界面上很薄的一層區(qū)域內(nèi)。其離散公式為:
式中k——界面上的曲率
δ(x)——界面上的函數(shù)
n——界面上的法向向量(向外為正)
δ(x-xs)——狄拉克δ函數(shù)
xs——界面S上的點(diǎn)
2數(shù)值模擬
采用聚合物專用流體分析軟件Polyflow,對(duì)圓形截面的流道進(jìn)行模擬分析,探討表面張力的尺寸效應(yīng)及表面張力系數(shù)和接觸角對(duì)微擠出流場(chǎng)的影響。由于流道結(jié)構(gòu)及流場(chǎng)的對(duì)稱性,本模擬采用軸對(duì)稱分析。模擬分析的流道尺寸及網(wǎng)格劃分如圖2所示。微通道尺寸AE=4×AB=1.2mm。網(wǎng)格采用四邊形結(jié)構(gòu)單元。節(jié)點(diǎn)數(shù)量為3751,網(wǎng)格數(shù)量為3600。
圖2微通道的網(wǎng)格
在數(shù)值模擬時(shí),熔體自由表面在模擬的過程中會(huì)發(fā)生變形,自由表面的網(wǎng)格會(huì)因?yàn)樽杂杀砻嫖恢玫淖兓l(fā)生變化。此時(shí),需要采用網(wǎng)格重置技術(shù)。網(wǎng)格重置可以根據(jù)邊界點(diǎn)的位置的變化重新定位內(nèi)部網(wǎng)格節(jié)點(diǎn)。Spine法是一種比較簡單,適用于二維擠出成型的網(wǎng)格重置方法。其網(wǎng)格節(jié)點(diǎn)是沿著線性進(jìn)行重新組織的,如圖3所示。節(jié)點(diǎn)的位置確定是按照一維方式進(jìn)行邏輯排列的,這就像是對(duì)二維平面進(jìn)行切片,切片的方式是沿著自由表面或者移動(dòng)邊界的法向方向,從而得到最終的網(wǎng)格。Spine法是線性組織的,并且在每個(gè)線段的端點(diǎn)處都有相應(yīng)的節(jié)點(diǎn)。假設(shè)x1、x2是線段的2個(gè)端點(diǎn)。按照Spine法的規(guī)則,內(nèi)部節(jié)點(diǎn)的位移數(shù)學(xué)表達(dá)式為:
圖3 Spine法變形網(wǎng)格
塑料熔體的表面張力系數(shù)一般在50N/mm左右,模擬時(shí)表面張力系數(shù)的取值范圍為(0~50N/mm),接觸角取值范圍為(-50°~50°)。材料黏度模型采用常數(shù)η0=100Pa·s。邊界條件設(shè)定為:EF為材料進(jìn)口端,法向速度設(shè)置為10mm/s,BF為對(duì)稱軸,CE壁面處的速度為零,AB邊界設(shè)置為法向力等于零,切向力等于零,AC為自由表面。