合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> 表面張力儀分析生物表面活性劑對菲、1-硝基萘的增溶與洗脫效果和機制
> 不同濃度6∶2氟調磺酸的表面張力測定儀器及結果(二)
> 不同濃度6∶2氟調磺酸的表面張力測定儀器及結果(一)
> 無機鹽濃度對HPAM不同復配體系降低界面張力能力的影響(二)
> 無機鹽濃度對HPAM不同復配體系降低界面張力能力的影響(一)
> 烷基二甲苯磺酸鹽表面活性劑界面張力、界面性能測定
> 不同溫度對氫氟醚HFE7000、HFE7200表面張力和黏度影響(二)
> 不同溫度對氫氟醚HFE7000、HFE7200表面張力和黏度影響(一)
> R1336mzz(Z))純質與POE潤滑油組成的混合物的表面張力測定
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應的影響——結果與分析
表面張力儀分析生物表面活性劑對菲、1-硝基萘的增溶與洗脫效果和機制
來源: 瀏覽 14 次 發布時間:2025-05-12
利用表面張力儀研究生物表面活性劑(如鼠李糖脂、槐糖脂、surfactin等)對多環芳烴(菲、1-硝基萘)的增溶與洗脫效果及機制,可從界面科學角度揭示其作用規律。以下是系統的研究框架和分析方法:
一、研究目標
量化增溶/洗脫效率:測定生物表面活性劑對菲、1-硝基萘的增溶能力(表觀溶解度提升)和從土壤/沉積物中的洗脫率。
解析作用機制:通過表面張力-濃度關系,明確膠束形成、界面吸附與污染物分配的關聯性。
二、實驗設計與方法
1.表面活性劑臨界膠束濃度(CMC)測定
儀器:懸滴法/鉑金板法動態表面張力儀。
步驟:
配制不同濃度生物表面活性劑溶液(如0.1–1000 mg/L)。
測量表面張力(γ),繪制γ-logC曲線,CMC即曲線拐點對應的濃度。
關鍵參數:
CMC值越低,表面活性劑在低濃度下即可形成膠束,增溶潛力越大。
菲/1-硝基萘存在時的CMC變化:若CMC降低,表明污染物參與膠束形成(共膠束化)。
2.增溶效果評估
增溶實驗:
在高于CMC的濃度下,將過量菲或1-硝基萘加入生物表面活性劑溶液,振蕩平衡后離心過濾。
使用HPLC/GC-MS測定上清液中污染物濃度,計算增溶率:
關聯分析:增溶率與表面張力降低程度(Δγ=γ水?γCMC)的線性關系。
3.洗脫實驗(土壤/沉積物體系)
方法:
將污染土壤與生物表面活性劑溶液(不同濃度)混合,振蕩后離心測定液相中污染物濃度。
計算洗脫效率:
表面張力監測:
洗脫后液相的表面張力變化,反映表面活性劑在土壤顆粒上的吸附損失。
三、機制解析
1.膠束增溶機制
疏水作用力:
1-硝基萘(log Kow=3.34)比菲(log Kow=4.57)極性更高,更易被極性膠束核心(如鼠李糖脂)增溶。
2.界面競爭吸附
表面活性劑在土壤/污染物界面的吸附:
表面張力儀測定洗脫后溶液的γ,若γ接近純水,表明表面活性劑大量吸附于土壤顆粒,導致膠束減少。
降低吸附的策略:添加助劑(如Ca2?)改變土壤電荷,減少表面活性劑損失。
3.增溶-洗脫效率的影響因素
因素|對增溶/洗脫的影響|表面張力儀監測指標
pH|影響表面活性劑電離狀態(如鼠李糖脂在pH大于6時帶負電)|γ-pH曲線
離子強度|高鹽度可能壓縮雙電層,促進膠束聚集|CMC變化(鹽效應)
溫度|高溫降低γ,提高膠束流動性|溫度梯度下的γ變化(ΔG_micelle計算)
四、數據解讀與案例
示例結果(鼠李糖脂對菲的增溶)
CMC測定:
純鼠李糖脂:CMC=50 mg/L(γ=30 mN/m)。
菲存在時:CMC降至35 mg/L,表明菲參與膠束形成。
增溶效果:
100 mg/L鼠李糖脂使菲溶解度從1.3 mg/L增至18.7 mg/L(增溶率≈14倍)。
洗脫效率:
污染土壤中洗脫率達62%,洗脫后溶液γ=45 mN/m(吸附損失約15%表面活性劑)。
五、技術優勢與局限
優勢:
直接關聯界面性質(γ、CMC)與增溶能力,無需復雜預處理。
可結合zeta電位儀、動態光散射(DLS)多維度驗證機制。
局限:
無法直接測定膠束內污染物濃度,需依賴化學分析(如HPLC)。
高濁度樣品(如土壤洗脫液)可能干擾表面張力測量,需離心過濾。
六、拓展方向
動態過程監測:
采用振蕩滴法表面張力儀,實時跟蹤污染物從土壤向膠束的轉移速率。
混合表面活性劑體系:
研究生物-化學表面活性劑復配(如鼠李糖脂+Tween 80)的協同增溶效應。
分子動力學模擬:
結合表面張力數據,模擬污染物在膠束中的空間分布(如菲偏向膠束-水界面)。
通過表面張力分析,可高效優化生物表面活性劑對PAHs污染修復的應用參數(如最佳濃度、pH),并為綠色修復劑設計提供理論依據。