合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> 鼠李糖脂生物表面活性劑在液-固界面上的潤濕改性微觀機制研究(三)
> 鼠李糖脂生物表面活性劑在液-固界面上的潤濕改性微觀機制研究(二)
> 鼠李糖脂生物表面活性劑在液-固界面上的潤濕改性微觀機制研究(一)
> 熱毛細效應引起的表面張力梯度導致傾斜壁面上液膜干斑的出現(xiàn)(三)
> 熱毛細效應引起的表面張力梯度導致傾斜壁面上液膜干斑的出現(xiàn)(二)
> 熱毛細效應引起的表面張力梯度導致傾斜壁面上液膜干斑的出現(xiàn)(一)
> 低總濃度下實現(xiàn)"超低界面張力"與"高黏彈性乳狀液"的雙重突破
> 巖液作用后海陸過渡相頁巖表面張力變化研究
> 低表面張力解堵液體系適用于海上低壓氣井水侵傷害治理
> 不同比例墨水配制對量子點薄膜形貌的影響
氣液液微分散體系的微流控制備方法及在稀土離子萃取領域的應用(上)
來源:化工進展 瀏覽 816 次 發(fā)布時間:2024-10-29
元素周期表中鑭系的15個元素,即鑭、鈰、鐠、釹、钷、釤、銪、釓、鋱、鏑、鈥、鉺、銩、鐿、镥,與鈧、釔兩種元素稱為稀土元素。稀土化合物由于獨特的化學性質(zhì)和電子結構,具備優(yōu)異的光、電、磁等性能,故而廣泛應用于超導、儲氫、催化等多個行業(yè)和領域。值得一提的是稀土材料還是一種重要的戰(zhàn)略資源,在航空航天及國防軍工領域有著重要的應用。我國稀土礦產(chǎn)資源分布廣泛,且種類豐富齊全,稀土總儲量占世界儲量的80%。雖然我國稀土資源豐富且占據(jù)世界稀土資源的巨大市場與份額,但過量的開采消耗付出了很沉重的環(huán)境代價。稀土開采過程中的酸沉、浸出等流程會產(chǎn)生大量富含低濃度稀土離子等污染物的廢水,該部分廢水若排放進入地下水體或河流,會對生態(tài)環(huán)境和人民的身體健康造成嚴重的影響。且稀土屬于不可再生資源,因此對浸出、酸沉等流程產(chǎn)生的廢水中的稀土離子進行富集回收既有利于環(huán)境保護又能實現(xiàn)資源的循環(huán)使用。
沉淀法是回收廢水中稀土離子的重要手段,目前應用最為普遍和廣泛。但該方法處理水體量較大的低濃度稀土浸出液時需要消耗大量沉淀劑,因此回收成本高,且該法處理周期長、選擇性差。相比于沉淀法,溶劑萃取法由于處理通量大、效率高、操作簡單等特點具備萃取回收低濃度稀土離子的潛在優(yōu)勢。近年來萃取設備無論是在模型化還是在實際應用領域均發(fā)展迅速,混合澄清槽、萃取塔、離心萃取器等是工業(yè)上廣泛關注和使用的萃取設備。浸出、酸沉等工序產(chǎn)生的廢水特點是稀土離子濃度低、待處理量大,因而大相比下的操作方可實現(xiàn)稀土離子萃取回收的目標。而傳統(tǒng)的萃取技術和設備在大相比操作時存在溶劑夾帶損失嚴重、萃取效率低、易乳化等弊端,無法實現(xiàn)萃取率高于90%以及富集倍數(shù)高于100的目標。因此,新型高效萃取設備和技術的開發(fā)是解決這一問題的關鍵所在。
氣液液微分散技術成為近年來微流控、微化工、微分析等領域的重要研究內(nèi)容。已有的關于氣液液微分散技術的研究結果表明該技術在材料制備、反應和分離等方面體現(xiàn)出了獨特的優(yōu)勢,有望為傳統(tǒng)萃取過程中反應慢、分相時間長等問題的有效解決提供一條新思路。氣液液微分散萃取的基本原理是在氣泡外層包覆有機萃取劑并進一步應用于低濃度稀土離子的萃取過程。在該過程中氣體的引入有兩個獨特優(yōu)勢:一是中空微液滴的形成增大了傳質(zhì)比表面積,加快反應速率;二是與油滴相比中空微液滴的密度大大減小,因此可加速分相。本文將介紹氣液液微分散體系的微流控制備方法和調(diào)控規(guī)律、多相微分散體系的流型、氣液液微分散萃取技術在稀土離子萃取回收領域的應用及其過程放大研究方面的最新進展。
1、氣液液微分散乳液體系的微流控制備
氣液液微分散體系的可控制備是后續(xù)應用的基礎和前提,氣液液三相流通??刹捎脝我晃⒎稚⒔Y構或組合微分散結構的微通道來制備。圖1和圖2分別是單一和組合微分散結構的代表,前者通常包括十字形、雙重同軸環(huán)管型微通道等;后者通常包括雙T形、雙十字形微通道等。以十字形微通道為例,氣液液三相流的制備如下:水、油、氣三相在泵的輸送下經(jīng)3個進料口匯集于十字形通道的交叉處,在出口管中浸潤通道壁面的一相作為連續(xù)相,另外兩相在各自慣性力和黏性力的作用下克服界面張力的束縛發(fā)生破碎并以液滴或者氣泡的形式分散在連續(xù)相之中。單一和組合微分散結構的通道各具特色,前者的優(yōu)勢是通道制作簡單,易加工;后者的優(yōu)勢是利于調(diào)控且流體可多股加入,具體通道結構的選擇需綜合考慮操作條件、物性參數(shù)及反應體系等多方面因素。
圖1單一微分散結構的微通道制備氣液液微分散體系
圖2組合微分散結構的微通道制備氣液液微分散體系
2、氣液液三相流流型調(diào)控
上述不同類型的微通道中所形成的流型也是學者們重點關注的內(nèi)容。在材料制備領域,流型是決定合成材料結構的關鍵因素且直接影響著材料的相關性能;在過程強化領域,不同流型的強化效果差別較大,選擇并調(diào)控合適的流型是重中之重;在三相反應中,流型可決定反應的轉化率和選擇性,是需要優(yōu)化的重要參數(shù)之一。相比于兩相體系,三相體系由于流體間更為復雜的相互作用及更高的自由度而呈現(xiàn)出了更多的流動形態(tài)(圖3)。如Su等在十字形微通道中成功調(diào)控出液滴氣泡間隔排列的氣液液三相流。Xu等基于同軸環(huán)管微設備實現(xiàn)了氣液液雙乳液的可控制備,并揭示了流量和界面張力等因素對雙乳液結構的影響。Wang等在雙T形通道內(nèi)通過調(diào)節(jié)操作條件可控制備了“水包油包氣”和“含有氣泡的液液平行流”兩種結構。Rajesh等通過觀察液滴氣泡的形狀及位置關系定義了“氣柱-液柱”“彈狀-液滴”“液柱-雙氣彈”等流型。除了實驗手段Rajesh等借助VOF數(shù)值模擬方式從機理上揭示了氣液液三相流的流動規(guī)律,歸納了不同Ca和We范圍內(nèi)的流型特征和規(guī)律。此外,Yang等通過傳質(zhì)引發(fā)相分離的方法成功調(diào)控出氣液液雙乳液,該方法能實現(xiàn)更大范圍內(nèi)氣泡直徑尺寸和液膜厚度的調(diào)節(jié)。
圖3微通道中氣液液三相流型